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1. Review of Bekenstein-Hawking Entropy

1.1 Metric

Schwarzschild Black hole in 4D has the metric,

ds2 = −
(
1− 2MG

r

)
dt2 +

(
1− 2MG

r

)−1

dt2 + r2dΩ2, (1.1)

with the Penrose digram (maximally continuation and compactification) in Figure

1, where I+ is the future lightlike infinite. The black hole region can be formally

defined as

B =M − J−(I+).

where J−(I+) is the past of I+ and M is whole spacetime manifold.

– 1 –



Figure 1: The Penrose diagram of Schwarzschild geometry

We can add the electric charge Q or the angular momentum J to get Kerr black

hole or Reissner-Nordström black hole. If both Q and J are nonzero, the metric is

Kerr-Newman black hole [2], (G ≡ 1),

ds2 = −∆

ρ2
[dt− a sin2 θdϕ]2 +

sin2 θ

ρ2
[(r2 + a2)dϕ− adt]2 +

ρ2

∆
dr2 + ρ2dθ2 (1.2)

where ∆ ≡ r2−2Mr+a2+Q2, ρ2 ≡ r2+a2 cos2 θ and a = J/M which is the angular

momentum per unit mass. We take the direction of J along the z-axis. It generates

the electromagnetic field,

F = Qρ−4(r2 − a2 cos2 θ)dr ∧ [dt− a sin2 dθ]

+2Qρ−4ar cos θ sin θ ∧ [(r2 + a2)dϕ− adt] (1.3)

When r is large, the electric field becomes the usual coulomb field of a charge Q and

the magnetic field becomes the field of a magnetic dipole moment Qa.

Kerr-Newman black hole has the outer and inner horizon at,

r± =M ±
√
M2 −Q2 − a2. (1.4)

As the case of Schwartzchild black hole, an observer can travel inside the horizon at

r = r+ but cannot send message out after crossing the outer horizon.

The cosmic censorship requiresM2 ≥ Q2+a2. When the equality holds, the cor-

responding black hole is called extremal. The two horizons coincides for an extremal

black hole, r+ = r− = r0 = GM ,

ds2 = −
(
r − r0
r

)2

dt2 +

(
r

r − r0

)2

dr2 + r2dΩ2
2. (1.5)
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or redefine r 7→ r − r0,

ds2 = −
(
1 +

r0
r

)−2

dt2 +

(
1 +

r0
r

)2

(dr2 + r2dΩ2
2), (1.6)

so the near horizon limit is AdS2 × S2. On the other hand, if M2 < Q2 + a2, there

is no horizon and the spacetime singularity is naked.

It is straightforward to generalize these solutions to higher dimension. For ex-

ample, in 5D, the extremal black hole has the metric,

ds2 = −
[
1−

(
r0
r

)2]2
dt2 +

[
1−

(
r0
r

)2]2
dr2 + r2dΩ2

3 (1.7)

where r20 = 4G5M/3π.

1.2 Black hole themodynamics

The black hole no hair theorem claims that in general relativity a 4D black hole is

uniquely characterized by M , Q and J [3][4][5][6][7] and therefore the four types of

black holes mentioned above are the only stionary black holes in 4D. 1 This surpris-

ingly simple description is somewhat analogous to themodynamics where a complex

system with many degrees of freedom can be described by the a small set of thermal

variables macroscopically. So We may consider the black hole thermodynamics.

• The first law of black hole thermodynamics is the conservation of energy. The

“thermodynamic variables” for a black hole would be the mass M , the angular

momentum J , the charge Q and a variable to characterize the “size” which is

chosen to be the horizon area A. For a Kerr-Newman black hole,

A = 4π(r2+ + a2). (1.8)

Take the derivative of Eqn.(1.8), we get [8]

dM = ΘdA+ Ω⃗ · dL⃗+ ΦdQ, (1.9)

where Θ = (r+− r−)/4A, Ω⃗ = 4πa⃗/A and Φ = 4πQr+/A. Comparing with the

usual form of first law of thermodynamics,

dE = TdS − pdV

the last two terms of Eqn.(1.9) are the work done on the black hole: Ω⃗ is the

angular velocity and ϕ is the electric potential. Then we may tend to identify

A as the entropy and Θ as the temperature.

1For example, we may think that the magnetic moment of a black hole depends on the charge

distribution. But by the no hair theorem, it is uniquely determined to be Qa.
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• The second law claims that the total entropy never decreases in a closed system.

So we need to (I) check that in a process which involves several black holes the

total horizon area never deceases and (II) by the interaction of some known

systems with a black hole to determine the entropy normalization.

Hawking proved that during the combination process of two Kerr black holes

into one Kerr black hole, the horizon area never decreases [9]. 2 Since the

area A is never decreasing during the black hole combination process, A is

proportional to the entropy S. Bekenstein considered massive particle capture

process to roughly determine the normalization [8]. 3 The accurate ratio is

determined by the accurate value of the black hole Hawking temperature [11],

T =
1

4π

r+ − r−
r2+ + a2

.

which gives

S =
A

4G
(1.11)

which is the Bekenstein-Hawking temperature. The temperature can be ob-

tained from the analytic continuation of the metric to the Euclidean spaces

or by considering the entanglement entropy of a field in one unverise and the

parallel universe [12].

• The third law is that as a system approaches absolute zero, the entropy ap-

proaches a minimum value. Note that it does not mean that when T → 0,

the entropy must vanish like the perfect crystal. The extremal black hole has

the zero temperature but nonzero entropy, which means there is a degeneracy

about exp(S) of the ground states of a black hole. However, it is hard to realize

this degeneracy in the classical physics.

In higher-dimensional space, the Bekenstein entropy formula is

S =
A

4GD

(1.12)

2The proof uses the fact that the black hole horizon is generated by the null geodesics without

future end points [10]. Then we can analyze the null vector field on the horizon by Gauss theorem

in curved space. A key assumption that the energy density is nonnegative everywhere, Tµνn
µnµ ≥ 0

so that the divergence of the null vector field is positive or zero. Hence the final cross section of

horizon with the final spacelike surface, which is just the final horizon area, must be larger or equal

than the cross section of horizon with the initial spacelike surface, which is the initial horizon area.
3By absorbing a particle with the radius b and the mass µ the minimal horizon area increases by

∆A = 8πµb. However, the particle’s radius b cannot be zero by the uncertainty principle, b ≥ µ/2π,

so the minimal increase of the horizon is, (G = 1)

∆A ≥ 4. (1.10)

The minimum increase of the entropy corresponds to the absorption of a bit information, which is

log 2, so the proportional factor is determined to be S ∼ log 2A/4.
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where GD is the D-dimensinonal Newton constant.

2. Rudiments of statistical mechanics

Statistical mechanics requires that the entropy in thermodynamics has a statistical

explanation,

S = logΩ, (2.1)

where in a microcanonical ensemble Ω is the number of microscopic states with the

energy E.

The second law of thermodynamics is naturally the fact that a system tend to

stay at a macroscopic state with relatively large number of microscopic states. In

classical physics, like the ideal gas system, we know that although macroscopically

the gas has only several thermodynamic variables, energy E, pressure p, volume V

and the temperature T . But from the kinetic theory, a macroscopic system of gas

contains huge number of molecules. Each molecule has the position xi, momentum

pi and even the inner degrees of freedom. Even when a macroscopic variable, like E,

is fixed, there are still huge number of combinations of each molecule’s microscopic

status. As the result, the entropy is large and may determine the system’s behavior

in classical physics.

However, for the black hole case, it is not easy to find the microscopic states

by classical physics. An alternative explanation consider a free scalar field in the

black hole geometry (fixed background) [13]. Then the entropy can be estimated by

the quantum statistics and the Hawking temperature, like the usual photon entropy

computation. However, this attempt gives divergent entropy which is in contradiction

to the Bekenstein-Hawking entropy. A possible modification imposes a space cut-off

with a Planck distance from the horizon and get the same order result of Bekenstein-

Hawking entropy. This is a suggestion that near the horizon quantum gravity effect

would be important and we need some new theory to treat the quantum states near

horizon.

3. Black hole entropy in string theory

String theory give us new insights for black hole system. The massive objects, like

D-branes warpped in extra dimensions, will generate black holes in noncompact

dimension in the supergravity limit whose macroscopic entropy can be calculated

classically by Bekenstin formula. On the other hand, the excitation of the objects,

like the modes on a D-brane, are the microstates and whose degeneracy gives the

microscopic entropy. It is interesting to see the consistency of the macroscopic and

microscopic result.
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Here is a subtlety: when we compactify the 10D string theory to get a black hole

in lower dimensional spacetime, in general there are a lot of moduli fields. It would

be a problem if the black hole entropy depends on the value of the moduli field at

infinity, because where the spacetime is essentially flat and the value of moduli field

are continuous but the microscopic entropy, S = logΩ, can only take discrete values

because Ω is integer. This problem is avoid by attractor mechanism [15], which shows

that the black hole entropy only depends on the moduli field value at the horizon

and there is a attractor solution so the moduli value at the horizon is independent

of its value at infinite.

Furthermore, since string theory has higher corrections beyond supergravity,

there is a new type of black hole, “small black hole”, for which the horizon area in

the supergravity limit is zero but its microscopic entropy is not zero. In this case,

the configuration may have the entropy large in Planck length lp but of the order one

in string length ls, so the supergravity is not no longer appropriate. String theory

gives the generalizd Bekenstein entropy formula which is in consistency with the

microscopic result. We would call the previous cases where the original Bekenstein

formula is satisfied as “large black hole”.

4. Large black holes in string theory

Here we just consider the extremal black holes with zero temperature, because in

this case we just need to count the degeneracy of the ground state. In particular,

we focus on the supersymmetric black holes, because supersymmetry guranteed that

the microscopic entropy obtained in weak coupling can be extrapolated to strong

coupling region for supergravity.

The cases for D > 5 always give zero horizon area [19] because for a extremal

black hole with finite horizon area in D dimension, the spacial metric behaves like[
1 +

(
r0
r

)D−3] 2
D−3

(dr2 + r2dΩ2
D−2)

However, string theory constructions always give an integral for the exponential

factor. If D > 5, then 2/(D− 3) is not an integer so the extremal black hole cannot

be obtained by string theory construction. Hence we just consider the cases D = 4, 5.

4.1 Five-dimensional black holes

For the five-dimensional black holes, at least three different charges are needed to

get the nonzero horizon area. Strominger and Vafa consider a black hole obtained

D1-D5 branes system wrapped on K3 × S1 [14]. However, the original paper does

not count the subtleties introduces by K3 in the macroscopic geometry, as noted by

Johnson and Myers [16]. Alternative, we can consider a simpler case, a 5D black

– 6 –



hole from D1-D5 branes warped on T 4 × S1 with compact momentum [17][18]. We

will review the latter case.

4.1.1 D1-D5 wrapped on T 4 × S1 with compact momentum

We consider the system with Q1 D1-branes in the 5-direction and Q5 D5-branes in

the (5, 6, 7, 8, 9)-direction [20][21]. So they are in parallel with each other. Further,

we assume that they coincide. To make the energy finite, we need the finite volume

of branes, so we warp the (6, 7, 8, 9)-direction on a T 4 with the volume V4 and the

5-direction on a S1 with the length L. We also assume the system has a momentum

p5 on the compact 5-direction, so

p5 = n5/L,

where n5 is an integral. So we have three different types of charges Q1, Q5 and p5.

First, we consider the limit when gQ ≫ 1, where Q would be any of the three

charges. In this limit, the supergravity limit is a good approximation and the geo-

metrical picture of a black hole is clear. By the analogy with black brane solution in

supergravity, this system gives the black hole geometry (string frame),

ds2 = Z
−1/2
1 Z

−1/2
5

[
ηµνdx

µdxν + (Zn − 1)(dt+ dx5)
2]

+Z
1/2
1 Z

1/2
5 dxidxi + Z

1/2
1 Z

−1/2
5 dxmdxm (4.1)

e−2ϕ = Z5/Z1. (4.2)

We set the index µ, ν on the (0, 5)-direction, i, j on the (1, 2, 3, 4)-direction and m,n

on the (6, 7, 8, 9) direction. The harmonic functions Z1, Z5 and Zn are defined to be

Z1 = 1 +
r21
r2
, r21 =

(2π)4gQ1α
′3

V4

Z5 = 1 +
r25
r2
, r25 = gQ5α

′

Zn = 1 +
r2n
r2
, r2n =

(2π)5g2p5α
′4

LV4

where r2 = xixi. Note that the horizon is at r = 0. In the viewpoint of the

5D noncompact spacetime (0, 1, 2, 3, 4), this solution is a black hole. Hence this

coordinate just describes the geometry of the horizon and the spacetime outside the

black hole.

The horizon area should be calculated in Einstein frame ds2E = e−ϕ/2ds2. The

straightforward computation gives,

A = 8πG(Q1Q5n5)
1/2,
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where G is the gravity constant in 5D. So the Bekenstein-Hawking entropy is

S = A/4G = 2π(Q1Q5n5)
1/2, (4.3)

Notice the result is dimensionless as it should for the entropy and has no dependence

of the moduli like g, L and V4. It means that the change of such moduli is an

adiabatic process.

The system is a BPS state: The original 10D string theory has 32 supersymmetry.

The parallel D1-D5 system keeps 1/4 supersymmetry and the compact momentum

breaks further 1/2 supersymmetry. So the system has 4 supersymmetry. The mass

of this black hole is

M = p5 +
Q1L

2πgsα′ +
Q5LV

gs(2π)5α′3 , (4.4)

which is simply the sum of Kaluza-Klein mass and the brane mass because it is a

BPS state and there is no interaction energy.

Here is an interesting consequence of the discussion above. Suppose that we

keep the number of each type of branes, but separate them: set the transverse

coordinates of Q
(1)
1 D-1 branes at (x1, x2, x3, x4) = (0, 0, 0, 0) while Q

(2)
1 D-1 branes

at (x1, x2, x3, x4) = (d, 0, 0, 0). We also set the Q
(1)
5 D-1 branes at (x1, x2, x3, x4) =

(0, 0, 0, 0) while Q
(2)
1 D-1 branes at (x1, x2, x3, x4) = (d, 0, 0, 0). Fix Q

(1)
1 +Q

(2)
1 = Q1

and Q
(1)
5 + Q

(2)
5 = Q5, the total mass is not changed by Eq.(4.4). It seem that we

separate a black hole into two black holes located at different positions. However,

this process deceases the entropy by Eq.(4.3) so cannot happen.

Now we got the other limit gQ ≪ 1 so the D-brane picture is available and we

count the microscopic states of the D-branes. We assume that the change of picture

does not change the number of microscopic states because of the supersymmetry.

In D-brane picture, open strings which end on Q1 D1 branes correspond to U(Q1)

Yang-Mills fields and open strings which end on Q5 D5 branes correspond to U(Q5)

Yang-Mills fields. We need an action for the D1-D5 system to find the constraints of

the field. The simplest way is to do T-dual on (1,2,3,4)-direction so we get Q1 D5-

branes and Q5 D9-branes. This system has 8 supersymmetry so it is the d = 6, N = 1

super-Yang-Mills theory. The action is determined mainly by the supersymmetry.

We just write down some related terms

L ⊃ |∂αχ+ iAαχ− iχA′
α|2 +D-termU(Q1) +D-termU(Q5),

where α = 0, 1, 2, 3, 4, 5, A is U(Q1) gauge field and A′ is U(Q5) gauge field. χ is a

Q1 ×Q5 matrix whose element is a Weyl doublet which comes from the scalar field

of hypermultiplet. For string theory viewpoint, χ is the massless open strings ends

on both D1 and D5. The D-terms come from super-Yang-Mills theory and has the

form DAiDAi

DAi = χ†σAtiχ,
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Then we do T-dual again on (1,2,3,4)-direction, so Ai → Xi/(2πα
′) and A′

i →
X ′

i/(2πα
′), we get the potential for D1−D4 system,

V =
1

(2πα′)2
|Xiχ− χX ′

i|2 +D-termU(Q1) +D-termU(Q5). (4.5)

Now we have the potential for the moduli field of a 2D theory. Supersymmetry

requires that V = 0. In general, there may be several different branches which

correspond to different solutions. We need to determine which branch is the black

hole state. If we take χ = 0, then the first term in Eq.(4.5) vanishes so we can take

arbitrary values of Xi and X
′
i. However, Xi and X

′
i are the transverse coordinates of

the two types of D-branes so arbitrary value of Xi and X
′
i will separate the branes

and the original configuration is destroyed. So we consider the Higgs branch,

Xi = xiIQ1 , X
′
i = xiIQ5

In this case, again the the first term in Eq.(4.5) vanishes. We can count the number

of free moduli spaces. Xm and A′
m provides 4Q2

1 + 4Q2
5 degrees of freedom while χ

provide 4Q1Q5. The D-term condition will remove 3Q2
1+3Q2

5 degrees of freedom. The

gauge symmetry will remove further Q2
1 +Q2

5. (They are rough estimation up to the

quadratic term of Q.) So we have a 2D theory with 4Q1Q5 bosons. Supersymmetry

provides further 4Q1Q5 fermions. The energy of this system is E = n5/L.

In statistical mechanics, S = log n(E), where n(E) is the degeneracy of states

with fixed energy E. There are two ways to calculate n(E):

• Consider the partition function Z = Tr
[
exp(−βH)

]
. Suppose the 2D field

theory is in finite temperature T , then the 0-direction. The partition function

computation can be done by the standard 1-loop string worldsheet computa-

tion. (We just have left-handed modes because of the compact momentum.)

Tr
[
exp(−βH)

]
=

∑
i

qhi−c/24

where q = exp(−2πβ/L) and c is the central charge. By modular invariance

and take the limit L→ ∞, Z = exp(πcL/12β), so

Z =

∫ ∞

0

dE n(E) exp(−βH) = exp(πcL/12β).

This is a Laplacian transformation of n(E). Reverse the transform, we get

n(E) ∼ exp
[
(πcL/3)1/2

]
= exp

[
(2π)(Q1Q5n5)

1/2
]
.

where E = n5/L which means S = log n(E) = (2π)(Q1Q5n5)
1/2 which is

consistent with Eq.(4.3).
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• A more direct way is to compute the generating function of state degeneracy.

If the system has the total compact momentum n5, the degeneracy is

∑
n5

D(n5)q
n5 =

( ∞∏
n=1

1 + qn

1− qn

)4Q1Q5

where the 1 + qn is the Fermionic contribution and 1 − qn is the bosonic con-

tribution. When n5 is large, we get

D(n5) ∼ exp(2π
√
Q1Q5n5)

since E = n5/L this gives the energy level degeneracy. It is also consistent

with Eq.(4.3).

4.1.2 Formal analysis by 5D supergravity

We already see several examples of 5D large black holes in string theory and each

of them contains three different types of the charges. The charges are coupled to

the gauge fields in 5D supergravity, so it is possible to classify all the 5D large black

holes by studying the 5D supergravity.

Recall that in type II string theories, before adding charges or compactifying

the extra dimension on a Calabi-Yau manifolds, we have 32 supercharges which

correspond to the N = 2 supersymmetry in 10D. Compactify the 10D theory on T 5,

without breaking any supersymmetry, we get the N = 4 supergravity in 5D. This

theory contains 42 scalar field (moduli) which can be realized from the dimension

reduction. The global symmetry is G = E6,6
4 while for a particular point in the

moduli space the symmetry is H = USp(8), so the moduli space is locally G/H.

5D supergravity with 32 supercharges also contains 27 U(1) gauge fields, which

are coupled with the charges in the previous examples. So there are 27 different

types of charges, which can be embedded in the 8× 8 antisymmetric centeral charge

matrix A, with the constraint,

Tr(ΩA) = 0,

where Ω is the antisymmetric symplectic metric with Ω12 = Ω34 = Ω56 = Ω78 = 1.

The global symmetry G is acting on Z and the action by the subgroup H is manifest,

Z 7→ ATZA (4.6)

where A ∈ USP (8), so ATΩA = Ω.

The black hole entropy should be a function of the 27 charges, or in the other

word, a function of Z. (Here we already assumed that the entropy is independent of

the moduli, like the radius of torus. See the section on attractor mechanism.) The

4This global symmetry is broken for the whole string theory and only E6(Z) is preserved.
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entropy should also be invariant under the global symmetry G, in particular, (4.6),

and a cubic function of the charges, as we show before. The unique entropy formula

up to the normalization is,

S = 2π
√
∆, ∆ = − 1

48
Tr(ΩZΩZΩZ). (4.7)

This formal expression can be reduced to the explicit form like (4.3). (4.6) would

transfer the matrix Z into the form such that Z12 = x1, Z34 = x2, Z56 = x3 and

Z78 = x4 while x1+x2+x3+x4 = 0 because of the constraint. Resolve the constraint

by,

x1 = Q1 −Q2 −Q3

x2 = −Q1 +Q2 −Q3

x3 = −Q1 −Q2 +Q3

x4 = Q1 +Q2 +Q3

We have S = 2π
√
Q1Q2Q3 which has the same form as (4.3).

4.2 Four-dimensional black holes

For the four-dimensional black holes, the situation is more complicated since we need

at least four different charges to get nonzero horizon area.

4.2.1 Formal analysis by 4D supergravity

The similar formal analysis based on supergravity still works. In this case, the 10D

IIB supergravity is reduced to D = 4, N = 8 supergravity, which contains 70 scalar

fields and 28 vector fields. The global symmetry is G = E7,7 while H = SU(8). The

corresponding 28 charges are again embedded in the 8×8 central charge matrix, but

without constraint. The G-invariant quartic function of the charges is,

∆ = Tr(ZZ̄ZZ̄)− 1

4
(Tr(ZZ̄))2 + 4(PfZ + PfZ̄)

where PfZ is the Pfaffian of Z. Again, we rotate Z by a SU(8) matrix U , Z 7→
UTZU , and resolve the resulting element by the charge Q’s, we get

∆ = Q1Q2Q3Q4,

and the entropy has the form S = 2π log
√
∆.

4.2.2 D2-D6-NS5 brane with compact momentum

4.2.3 D3 brane warpped on three-cycle

Type IIB string theory compactified on Calabi-Yau manifold gives D = 4, N = 2

supersymmetry containing h1,1+1 vector multiplets which are the complex structure
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moduli. A 4-dimensional black hole can be realized by wrapping D3-branes on a

special Lagrangian three-cycle5 C. [22]

The wrapped D3-brane has to satisify the BPS bound,

M ≥ eK/2

∣∣∣∣ ∫
C

Ω

∣∣∣∣. (4.8)

whereK = − log(i
∫
M
Ω∧Ω̄) is the Kähler potential. We can use the special geometry

to rewrite the bound,

XI = eK/2

∫
AI

Ω, FI = eK/2

∫
BI

Ω, I = 0, ..., h1,1 (4.9)

and the normalization of Ω can be avoided by defining

tα =
XI

X0
, α = 1, ..., h1,1

On the basis of 3-cycles, the supersymmetric cycle is expanded as C = pIBI − qIA
I

and its dual is Γ = pIαI − qIβ
I . So the BPS bound can be rewritten as,

M ≥ |pIFI − qIX
I |.

We just consider the extremal case, M = |pIFI − qIX
I | ≡ |Z|, then it seems that the

black hole metric is (1.6) withM = |Z|. However, this argument is naive because we

did not fix the moduli fields. Without breaking the spherical symmetry, the metric

in general is,

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + r2dΩ2
2) (4.10)

where the U(r) is related to the r-dependent moduli fields, tα(r). Note that when

r → ∞, the spacetime is asympotically flat so the moduli at infinity, tα(r = ∞), are

free. If the the horizon area of (4.10) depends on the coutinuous values of tα(r = ∞),

it would be a contradiction since by Bekenstein formula,

A = 4S = logΩ

the horizon area can only takes discrete values. This problem is solved by the at-

tractor mechanism [15].

5A special Lagrangian manifold is a submanifold such that some supersymmetry is preserved

when on it a D-brane or M-brane is warpped. By the explicit form of supersymmtric transformation,

the conditions for such submanifold are

i∗J = 0, i∗Ω ∝ v

where i∗ is the pullback from the Calabi-Yau manifold to the submanifold, J and Ω are the Kähler

form and the (3,0) form of the Calabi-Yau manifold and v is the volume form of the submanifold.
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5. Attractor Mechanism

We consider the metric (4.10) and the r-dependent moduli tα(r) by the method

[23]. Instead of solving the Einstein equation for U(r), which is a second order

differential equation, we use the BPS equation (first order equation) for unbroken

supersymmetry,

dU

dτ
= −eU |Z|, (5.1)

dtα

dτ
= −2eUGαβ̄∂β̄|Z| (5.2)

which correspond to δψµ = 0 and δλα = 0. Here we inversed the radius coordinate

by defining τ = 1/r, so the horizon is at τ = ∞ while the asymptotically flat region

is at τ = 0. |Z| is the absolute value of the central charge,

Z(Γ) ≡ eiα|Z| = eK/2

∫
C

Ω.

The equations 5.2 gives a flow on the moduli space, for which the initial point is the

moduli’s value in the asymptotically flat region and the ending point is at the near

horizon region. To solve the moduli problem, we want to show that,

• There is an attract point in the moduli space so that the different flows will end

in the same point. In the other word, the value tα(τ = ∞) is fixed, independent

of the initial value, tα(τ = 0).

• The horizon area only depends on tα(τ = ∞) and Uα(τ = ∞). So the black

hole entropy is independent of the moduli in the in the asymptotically flat

region.

First, we show that the equations (5.2) has the analogous form of the damped

oscillator, so the attractor exist. |Z| is a function of τ , via the moduli field, |Z|(τ) =
|Z|(tα(τ), t̄β(τ)), so

d|Z|
dτ

=
dtα

dτ
∂α|Z|+

dt̄α

dτ
∂ᾱ|Z| = −4eUGαβ̄∂α|Z|∂β̄|Z| ≤ 0, (5.3)

So |Z| is monotonically decreasing during the evolution, just like the energy for the

damped oscillation, which implies the existence of an attractor. See the table (1) for

the detail.

In general, when τ → ∞, the flow ends up at a point S in the moduli space

where |Z| takes the finite minimal value |Z⋆|, since |Z| is bounded below. The point

S is an attractor since |Z| is monotonically decreasing during the evolution. No

matter where the initial point is in the moduli space, the final (near horizon) value
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Damped oscillator Moduli fields

Coordinates p, x tα

Time t τ

E.O.M dx
dt

= p
m
, dp

dt
= −kx− γp

m
dtα

dτ
= −2eUGαβ̄∂β̄|Z|

Energy E = p2

2m
+ kx2

2
≥ 0 |Z| ≥ 0

Energy evolution dE
dt

= − γp2

2m2 ≤ 0 d|Z|
dτ

= −4eUGαβ̄∂α|Z|∂β̄|Z| ≤ 0

Attractor minimal E minimal |Z|

Table 1: the attractor mechanism as an analogy as the damped oscillator

of the moduli fields is fixed as S. Furthermore, for large τ , the moduli fields are

approaching the fixed point, |Z| ∼ |Z⋆|, so (5.1) reads,

e−U ∼ τ |Z⋆|

and the near-horizon metric is AdS2 × S2,

ds2 ∼ − r2

|Z∗|2
dt2 +

|Z∗|2

r2
(dr2 + r2dΩ2

2),

with the horizon area,

A = 4π|Z∗|2 (5.4)

which has no dependence of the moduli field at infinity.

(5.1) and (5.2) can be combined into one equation,

2
d

dτ

[
e−U+K/2Im(e−iαΩ)

]
= −Γ + exact form (5.5)

In the near horizon limit,

2eK/2Im(Z̄∗Ω) = −Γ + exact form

which means the dual form of the supersymmetric cycle is combination of a (3, 0)

form and a (0, 3) form near horizon. This characterized the attractor point. The

integral over AI and BJ gives the attractor equation in special gemotry formula,

pI = −2Im(Z̄XI) and qI = −2Im(Z̄FI) (5.6)

6. Small black holes in string theory* not complete!

The analysis on black hole entropy are based on general relativity or supergravity.

However, we think that there would be a quantum gravity theory for which super-

gravity is an approximation. We know that in string theory, string interaction [21]
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would produce higher order curvature terms in additional to the original Einstein-

Hilbert action. Does the higher curvature terms change the Bekenstein-Hawking

black-hole formula?

Wald [24] gives a more general black hole entropy formula for a general gravity

Lagrangian which can be a function of gµν , Rµνρλ, DτRµνρλ, etc,

S = 2π

∫
horizon

dΩ ϵµνϵµν
∂L

∂Rµνρλ

(6.1)

where µ and ν are the index of 2D horizon coordinates. This formula is derived

by the Noether charge on horizon. When the gravity theory is general relativity,

L = R/16G, the Eq.(6.1) is reduced to S = A/4G which is Bekenstein-Hawking

entropy. However, with the higher curvature corrections, even when the horizon has

a zero area, the entropy can still be nonzero by Wald’s entropy formula.

Here we consider an example in string theory [25]. The heterotic string is com-

pactified on T 4×T 2 where T 4 is a in (6,7,8,9)-direction amd T 2 is in (4,5)-direction.

Consider a string with winding number w along the 5-direction. For the heterotic

string compactified on T 6, we have the O(22, 6;Z) symmetry while the internal mo-

menta pL has 22 components and pR has 6 components. The even lattice condition

reads (in the dimensionless unit)

p2R − p2L is even

and the Virasoro constraint gives,

1

4
α′m2 =

1

2
p2R +NR =

1

2
p2L +NL − 1.

For the (n,w) state p2R − p2L = 2nw. We want to make the (n,w) state to be a BPS

state, so we set NR = 0 to keep half of the supersymmetry.

NL = 1− nw. (6.2)

The number of states is generated by the partition function,

Z(β) = 16
∑

dN exp(−βN) =
16

∆(q)24

where N = w|n| = NL − 1. The factor 16 comes from the degeneracy of the right-

moving supersymmetric ground state and latter equality comes from the 24 left-

handed bosons. ∆(q) = η(q)24

Again, we use the inverse Laplacian transformation and by the modular invari-

ance,

dN =
1

2πi

∫
C

dβ exp(βN)

(
β

2π

)12
1

∆(e−4π2/β)
. (6.3)
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The saddle point approximation gives dN ∼ exp(4π
√
w|n|). More accurate result for

large N is given in [19]

dN ∼ 16Î13(4π
√
N).

where the special function is

Îν(z) =
1

2πi

∫ ϵ+i∞

ϵ−i∞

( t

2π

)−ν−1
et+z2/4tdt

As before, the statistical entropy is S = log dN . So we may like to find the space-

time geometry of this configuration by supergravity as before. Then we may expect

that the Bekenstein-Hawking entropy from the horizon area will be consistent with

the statistical entropy computed above. However, when N is large, the supergravity

approximation will break down and the high curvature terms will be important. The

supergravity solution is obtained but gives zero horizon area. [26] (Actually, this

model just have 2 charges in 4D but nonzero 4D black hole horizon need 4 charges.)

So we need to find the geometry and takes the high curvature terms into account.

It is more convient to use the dual picture, type IIA compactified on K3 × T 2.

The special geometry is applicable and the quantum gravity correction can be read

from the prepotential. The system has D = 4 N = 4 supersymmetry, so only the first

correction to the prepotential is nonvanishing. Here we still use the N = 2 complex

special geometry. The vector multiplet moduli space of N = 2 supergravity with nv

vector multiplets can be parameterized by nv+1 complex projective coordinates XI .

There are infinite numbers of higher derivative corrections to the Einstein-Hilbert

action. The holomorphic prepotential F (XI) is generalized to be

F (XI ,W 2) =
∞∑
h=0

Fh(X
I)W 2h

where h is the genus andW is the reduced chiral multiple that involves the gravipho-

ton field strangth. The prepotential satisfies the homogeneity relation,

XI∂IF (X
I ,W 2) +W∂WF (X

I ,W 2) = 2F (XI ,W 2)

The attractor point in the moduli spaces is determined by the equations

pI = Re[CXI ] (6.4)

qI = Re[CFI ] (6.5)

where pI is the magnetic charge and qI is the electric charge. By the convention,

the graviphoton field strength at the horizon takes the value C2W 2 = 256. FI ≡
∂F/∂XI . The high order correction for the supergravity is given in [27]. By the

Eq.(6.1),

S =
πi

2
(qIC̄X̄

I − pIC̄F̄I) +
π

2
Im[C3∂CF ].
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The first equation Eq.(6.4) can be solved as,

CXI = pI +
i

π
ϕI

We define the “free energy” to be

F = −πIm
[
F
(
pI +

i

π
ϕI , 256

)]
so

qI =
1

2
(CFI + C̄F̄I) = − ∂

∂ϕI
F (ϕ, p).

The Wald entropy can be rewrite as

S(q, p) = F (ϕ, p)− ϕI ∂

∂ϕI
F (ϕ, p).

So the entropy of a black hole is the Legendre transformation of F with respect to

ϕI . ϕI play the role of chemical potentials. By statistical mechanics, the “partition

function”

Z (ϕI , pI) = eF (ϕI ,pI) =
∑
qI

Ω(qI , p
I)e−ϕIqI .

Now we return to the (n,w) system. It is dual to the type IIA theory onK3×T 2 with

w D4-brane wrapped on the K3 and n D0-branes. The D0-branes are electrically

charged and the D4-brane is magnetically charged. So only the two charges, q0 = n

and p1 = w are nonzero. Since the theory has N = 4 supersymmetry, the only

nonvanishing contributions to the prepotential are F0 and F1. The free energy is

[26],

F = −1

2
Cabϕ

aϕb p
1

ϕ0
− log(|∆(q)|2)

with

q = exp(
2π2p1

ϕ0
+

2πiϕ1

ϕ0
).

Then the attractor equations can be solved as qA = (q0, 0, ..., 0) and pA = (0, p1, 0, ...0).

By the Legendre transformation,

ϕ0 = −2π

√
p1

|q0|

and the entropy

S = 4π
√
p1|q0| = 4π

√
w|n|.

This “thermodynamic” entropy is consistent with the statistical result Eq.(6.3) in

the saddle point approximation.
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